Spherical maximal operator on symmetric spaces of constant curvature
نویسندگان
چکیده
منابع مشابه
Continuous Hahn Polynomials of Differential Operator Argument and Analysis on Riemannian Symmetric Spaces of Constant Curvature
For the three types of simply connected Riemannian spaces of constant curvature it is shown that the associated spherical functions can be obtained from the corresponding (zonal) spherical functions by application of a differential operator of the form p(i d/dt), where p belongs to a system of orthogonal polynomials: Gegenbauer polynomials, Hahn polynomials or continuous symmetric Hahn polynomi...
متن کاملAlgebraic curvature tensors whose skew-symmetric curvature operator has constant rank 2
Let R be an algebraic curvature tensor for a non-degenerate inner product of signature (p, q) where q ≥ 5. If π is a spacelike 2 plane, let R(π) be the associated skewsymmetric curvature operator. We classify the algebraic curvature tensors so R(·) has constant rank 2 and show these are geometrically realizable by hypersurfaces in flat spaces. We also classify the Ivanov-Petrova algebraic curva...
متن کاملAlgebraic Curvature Tensors for Indefinite Metrics Whose Skew-symmetric Curvature Operator Has Constant Jordan Normal Form
We classify the connected pseudo-Riemannian manifolds of signature (p, q) with q ≥ 5 so that at each point of M the skew-symmetric curvature operator has constant rank 2 and constant Jordan normal form on the set of spacelike 2 planes and so that the skew-symmetric curvature operator is not nilpotent for at least one point of M .
متن کاملSubspaces of Maximal Operator Spaces
A Banach space E can be embedded into B(H) in a variety of ways. The embeddings giving rise to the minimal and maximal possible operator space norms (introduced in [1], [3] and [4] and further investigated in [21] and [22]) are especially interesting to us. Let A be the set of all functionals on E of norm not exceeding 1 and let B be the set of all linear maps T : E → Mn such that ||T || ≤ 1 (h...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2002
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-02-03095-7